Analysis of Vehicle-Following Heterogeneity Using Self-Organizing Feature Maps
نویسندگان
چکیده
منابع مشابه
Analysis of Vehicle-Following Heterogeneity Using Self-Organizing Feature Maps
A self-organizing feature map (SOM) was used to represent vehicle-following and to analyze the heterogeneities in vehicle-following behavior. The SOM was constructed in such a way that the prototype vectors represented vehicle-following stimuli (the follower's velocity, relative velocity, and gap) while the output signals represented the response (the follower's acceleration). Vehicle trajector...
متن کاملusing game theory techniques in self-organizing maps training
شبکه خود سازمانده پرکاربردترین شبکه عصبی برای انجام خوشه بندی و کوانتیزه نمودن برداری است. از زمان معرفی این شبکه تاکنون، از این روش در مسائل مختلف در حوزه های گوناگون استفاده و توسعه ها و بهبودهای متعددی برای آن ارائه شده است. شبکه خودسازمانده از تعدادی سلول برای تخمین تابع توزیع الگوهای ورودی در فضای چندبعدی استفاده می کند. احتمال وجود سلول مرده مشکلی اساسی در الگوریتم شبکه خودسازمانده به حسا...
Unsupervised Feature Learning using Self-organizing Maps
In recent years a great amount of research has focused on algorithms that learn features from unlabeled data. In this work we propose a model based on the Self-Organizing Map (SOM) neural network to learn features useful for the problem of automatic natural images classification. In particular we use the SOM model to learn single-layer features from the extremely challenging CIFAR-10 dataset, c...
متن کاملSelf-Organizing Feature Maps with Self-Organizing Neighborhood Widths
Self-organizing feature maps with self-determined local neighborhood widths are applied to construct principal manifolds of data distributions. This task exempli es the problem of the learning of learning parameters in neural networks. The proposed algorithm is based upon analytical results on phase transitions in self-organizing feature maps available for idealized situations. By illustrative ...
متن کاملUsing Self-Organizing Maps for Sentiment Analysis
Web 2.0 services have enabled people to express their opinions, experience and feelings in the form of user-generated content. Sentiment analysis or opinion mining involves identifying, classifying and aggregating opinions as per their positive or negative polarity. This paper investigates the efficacy of different implementations of Self-Organizing Maps (SOM) for sentiment based visualization ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Intelligence and Neuroscience
سال: 2014
ISSN: 1687-5265,1687-5273
DOI: 10.1155/2014/561036